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For a particular model with two electronic states, each with two vibrations, the dipole correlation 
function governing electronic absorption is e-iC~~ with spectrum ~o 0_+7. The function starts 
as e i~ot (7 ~ co0), with Fourier transform peaking around ~o 0 instead of r + 7, and this is associated 
with vertical excitation. After a time t ~ 2/7 the spectrum goes over into the normal one. As a gener- 
alization, a procedure is outlined for characterizing the state reached first after interaction with 
light is initiated. Finally it is suggested that one can understand aspects of internal conversion by 
analogy with the case of vertical excitation. 

Ftir ein Modell mit zwei Elektronenzust~inden, jeder mit zwei Schwingungen, wird die elektronische 
Absorption durch die Dipolkorrelationsfunktion e - ~~176 cos 7 t mit dem Spektrum o) 0 • 7 beschrieben. 
Die Funktion beginnt als e i~0t (7 ~ e)0) mit dem Maximum der Fouriertransformierten um coo 
statt coo -+ 7. Dies ist mit einer vertikalen Anregung verknfipft. Nach einer Zeit t ~ 2 / 7  geht das Spektrum 
in das normale Spektrum fiber. Als eine Verallgemeinerung wird eine Methode ausgeffihrt, die den 
Zustand der zuerst, nach einer Wechselwirkung mit Licht, erreicht wird, beschreibt. Es wird vor- 
geschlagen, dab bestimmte Aspekte der inneren Konversion durch Analogie zur vertikalen An- 
regung zu verstehen sind. 

La fonction de corr61ation dipolaire gouvernant l'absorption ~lectronique pour un module 
particulier ~ deux 6tats 61ectroniques, chacun avec deux vibrations, est e -~'~~ cosTt avec le spectre 
COo -%+ 7. La fonction commence comme e-~O~ 7 ~ Wo), avec une transform6e de Fourier centr6e autour 
de co o au lieu de COo T 7; ceci est associ6 ~. l'excitation verticale. Apr6s un temps t ~ 2/7 le spectre devient 
normal. Description d'un proc6d6 pour caract6riser l'6tat premier atteint lorsque l'interaction avec 
la lumi6re est 6tablie. Enfin on sugg6re que des aspects de la conversion interne peuvent Etre compris 
par analogie avec le cas de l'excitation verticale. 

Introduction 

O r d i n a r i l y  the  c h a n g e  in the  n u c l e a r  p o t e n t i a l  ene rgy  f u n c t i o n  wh ich  ac- 
c o m p a n i e s  e l ec t ron i c  exc i t a t i on  cal ls  for  m a r k e d  s t ruc tu ra l  changes .  H o w e v e r  
t rans fe r  o f  e l e c t ron i c  exc i t a t i on  ene rgy  f r o m  one  m o l e c u l e  to  a n o t h e r  n e a r b y  

w o u l d  l imi t  the  t i m e  the  e n e r g y  c o u l d  spend  on  the  first a n d  if the  i n t e rva l  s h o u l d  

be  so shor t  as to in te r fe re  wi th  the  n u c l e a r  r e o r g a n i z a t i o n ,  o n e  m i g h t  expect ,  

a n d  i n d e e d  one  f inds s o m e  u n u s u a l  effects:  thus  the  a p p e a r a n c e  o f  the  sha rp  J 

b a n d  wi th  cyan ine  dye  p o l y m e r  cha ins  a n d  the  o c c u r r e n c e  o f  me ta l l i c  re f lec t ion  
f r o m  m o l e c u l a r  c rys ta ls  c o m p o s e d  of  s t r o n g  a b s o r b e r s  [1].  T o  u n d e r s t a n d  effects 
such as these  it  is he lpfu l  to e m p l o y  the  n o t i o n  o f  ve r t i ca l  exc i t a t ion ,  a c c o r d i n g  

to  wh ich  a m o l e c u l e  m i g h t  first a b s o r b  l ight ,  k e e p i n g  its g r o u n d  s ta te  s t ruc tu ra l  
charac te r i s t ics ,  be fo re  g o i n g  on  e i the r  to  r e o r g a n i z e  [2] o r  to h a n d  its ene rgy  of  
exc i t a t i on  o v e r  to  a n e i g h b o r  [3].  
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In this note the vertical excitation plus reorganization concept by itself is 
explored. That is, an absorption spectrum for just a single molecule is calculated, 
with emphasis on the duration of the encounter between molecule and radiation. 
The radiation is treated classically, and is brought in via an interaction Hamiltonian 
which contains a stepfunction as a factor. The results are generalized, and in a 
final section, consideration is given to the possibility of applying the results 
towards the understanding of internal conversion. 

The Ordinary Spectrum 

We may typify the effect of vibrational reorganization through the use of a 
two-level model for the vibrational states within a two-level model for the 
electronic states. The ground state manifold will be taken to consist of the 
stationary-state functions 

where ~p and the column vectors refer respectively to electronic and vibrational 
parts (we are tacitly assuming that the Born-Oppenheimer approximation is 
applicable and even that we may neglect the dependence of ~p on the nuclear 
coordinates). The excited-state manifold would be spanned by 

but the stationary states would involve a mixing (unit column vectors are vibra- 
tional energy eigenfunctions corresponding to the potential energy surface for 
the ground state). In the extreme case there could be a spreading of vibronic 

1) which transitions would intensity equally into the two transitions from FN 0 ' 

then involve the following excited stationary-state functions 

q~r [ l/]//~] ' tPr ( _  1/1/2 ] " 

The expressions for the transition moments (the moment, #, treated as a scalar) 
would be 

/ l / l /2 \  
S dztp*(lO)#opPr~lf~ ) =#Nv/]/~ 

f dz~*(10)#op~v l -  1/1/~] = #Nv/]~, 

where #Nv represents the electronic moment and the factors 1/~/2 stand for the 
Franck-Condon integrals. With these expressions squared, one-half of #gr is 
found in each transition. 
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Now we number  the wave functions serially, omitting the vibrationally 
excited ground state, and using the ground-state vibrations to define the basis 

A Hamil tonian which brings in the electronic excitation, with energy co0(h = 1), 
and also the vibrational mixing accompanying this electronic excitation, with 
mixing parameter  7, is 

H = coo[ll> <11 + 12> <211 + ~,[11> <21 + 12> <11] �9 

The levels come at 0, co o + 7, with eigenfunctions as postulated above. The electric 
moment  operator  is 

flop = ~ N V [ I 0 >  <11 ~- 11> <0l]. 

The absence of a part  with 12) in # comes from the choice of basis. The vertical 
transition [0)~[1>,  while not a transition to a stationary state, fits in with the 
idea of the Franck-Condon principle. Having a unit Franck-Condon integral 
corresponds to having no change in the nuclear wave function. 

For  later use and for a general orientation we first consider the steady state 
or long-time case. We confine our interest to the spectral function for absorption, 
which is proport ional  to the imaginary part  of the complex susceptibility. This 
last as a Fourier transform may be considered technically as having positive and 
negative frequency parts, but for absorption we need use only the positive 
frequency part. 

An expression for this part  written in terms of a basis is [4] 

Z+ ~ * + = C r [ A r j g j k # k s C s  , 
r j k s  

where % c~ are ground state amplitudes of the r and s basis functions, #rj and #ks 
are electric moment  matrix elements, 

gfk = iO(.jt] k0>o+o N . 

O't[ is in the Schr6dinger representation and is a solution of the Schr6dinger 
equation at the time t, whereas Ik0> is a solution at the time zero. O=O(t) is a 
Heaviside function. The vertical line with r + co s means a Fourier transform. 

Specializing to the case of our molecular model we have 

so that 

C O = 1, C 1 ----- C 2 = 0 

#oa = <O[/z[l> =PNv, [Ao2 = 0  

con = 0 

X+ ----~vgil 

gl~ =iO(lt[lO>[o.  

The simplicity in functional form is related to our choice of basis. 

21" 
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A key relation obeyed generally by the g's is 

COgjk = - (.j0l k0> + iO<jrlH(O) lkO>lo. 

It will now be used to obtain g l l  and hence Z+. Thus 

COg11 = - -  1 + iO<l t IH(0)[ lO>l~ 

and 

give 

In the sa.me way 

H(0) 110> =COol 10> + 7120> 

COg11 = -- 1 + COogl i -4- Yg12 �9 

COg12 = ( '00912 + ? g l  1 " 

Eliminating g12 we find (x = co - COo) 

CO - -  (D O X 

9 1 1 = - -  (CO__CO0)2 y2 = X2 • 2 �9 

There are poles at x = + y  corresponding to the lines in the spectrum at 
COo---Y- When x =  + ~  the factor multiplying the pole factor of l / x -  7 is 
- x / x + ? = -  1/2. We call this R11(Y). Also R 1 1 ( - y ) = - x / x - y = -  1/2. (The 
equality of the R's evidently corresponds to the spreading of intensity already 
found). We shall be needing the other g. It is 

7 
9 1 2  = X2 - -  72 

with R12(7) = - 1/2 and R12  ( -  y) = + 1/2. Finally we may use the R's to write 
the g's as spectrally resolved 

911  - -  

912  m 

1 1 1 1 

2 x - - ?  2 x +  7 

1 1 1 1 
+ 

2 x - - y  2 x +  7 

For  brief interaction times we shall have to work with a modification of the 
above procedure. The g's will contain terms which are like our present g's before 
the Fourier transform is taken - i.e. <ltL10> and ( l t ] 20> .  Thus we need to 
invert the Fourier transforms for gl i and g12. 

To this end we observe that if <J] is an energy eigen W 

<jtljO> = e  - i~ j t  

and 
1 

iO(.jtljO)l ~ -- 
CO j - -  CO 
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More generally, if there is a sum of terms 

then 

<tl0> -: ~ R(o.)j)e - i~ 
J 

iO(t[O)G= ~ R(coj) 
j c o j - c o  

Turning the argument around we have, from the spectral resolutions 

<It]  10)  =le- i (~176176176 

: e-iC~ 

l t l20>=�89 �89 i(~o-v), 

= _ ie-iC~O~sinTt. 

We see that when t > 0 is so small that cos 7 t ~ 1 the correlation function < 1 t [ 10) 
goes as e -  i~ot (that is when ? ~ co o, and this is important). The appearance of co o 
instead of either of the frequencies coo + 7 foreshadows our eventual result for 
short times. It comes about because all the intensity in #op occurs from j0> to [1), 
and < 11H I l> = coo ; and means that the molecule has not had time to reorganize 
according to the 7 process in the Hamiltouian. 

Formalism for Transient Susceptibility 

The steady state expression used above for X+ has as precursor the more 
compact  relation [5] 

Z = iO<N - oo] [#(t), #(0)] I N -  oo)L 

valid for the case of a system with no permanent  dipole moment,  where #(t) is 
a Heisenberg operator  referred to states of the molecule, and the ground state 
expectation value is being taken. To suit our present purposes the derivation of 
this expression has to be modified; after which we can carry the modification 
through to the expression involving the g%. The change selected consists of the 
introduction of a step function: two Heaviside functions in place of the usual one. 
(Alternatively, one could use a factor representing the adiabatic turning on of 
the perturbation e n(t-~) where ~/ is allowed to be appreciable - in which case 
component  spectral lines would have Lorentzian shape.) 

Thus we may start with 

Hin t = # (t) E (t) 

E( t) = O( t ) . f  e i~' O('[-  t) 

and an expectation value for the response at the particular time t" 

< N t l # ( t ) ] N T )  . 
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Correspondingly the function 0(t-- t) is zero when t exceeds ~, which means shutting 
off the light the instant after the response is taken - clearly a harmless thing to do. 
The other (the new) Heaviside function constitutes an idealization of a sudden 
onset of interaction at t = 0. We call it the switching-on of the light. Depending 
on which value of t '>  0 is picked for switching the light back off, one can select 
from the whole range of possible time intervals. 

The linear response may be found from the first terms of the S-matrix expansion 
for IN}-) as developing out of IN - o o ) ,  all this in the known way. The susceptibility 
then works out to be 

z = iO(s)O(-i- s)([~(s), ~0)1)10~, 
where 

S=t'--t. 

(When s is then set equal to t (a new t) there results an interchange in the Heaviside 
functions, so that for example O(s)~ O(t) refers to the original 0(T-t) .)  

The expression for Z+ in terms of a basis is obtained the same way as before 
except that now both 0's have to be carried along, and make their appearance 
in the new g's. Thus 

z+ (?)- E Cr*  rjgj  (?) kscs, 
r jks  

where 

g~(-{) = iO(O0(-{- t)~t] kO)[o+~0~ �9 

As expected, the key relation for the g's as used in the previous section has 
to be modified. To obtain the new relation we differentiate a product of four 
functions and then integrate, - ~ to + ~ : 

d Eo(t3o(r_O tlko>e, ,3dt. 
- o o  

(Here we use e~ in place of co + eo N and omit  the plus on the g.) Because of the O's 
the bracketed expression is zero at the limits, but this is equal to 

0 = 6(0 0 ( -  0 (jtl  kO)[, - O(t),~(?- t) (jtl kO)], 

d 
+ O(t)O({- t) ~ ( j r  IkO)[o 

+ ioO(t) O({- t) ~t l  kO)[~ 

= O(T)(jO I kO) - 0(0 (,jr I kO> e '~ 

+ 0(0 0(-{- t) ( -  i)(/t I U(O)I kO)lo + og~k(7). 

The factor O(t-) may be disregarded. It simply means that unless one waits to 
measure the response until after the light is turned on there will be no response. 
Then 

~ogjk({) = -- (.jOI kO) + iO(t) 0('{-- t) (.jtlH(O) lkO)]o 
+ (.j-{[ kO) e i~ 
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which is our key relation for the new g's. The first two terms on the R.H.S. are 
essentially the usual ones, and by themselves would allow us to construct a set 
of coupled equations for the g(T)'s in perfect analogy with the prior steady-state 
treatment. The third term, inhomogeneous like the first, must therefore bring in 
the transient behavior. 

Before going on to our principal application, we consider the simplest excitation 
process. With two levels only and with o~ N = 0 we have 

H I l O > = o 0 l l O >  

1 1 
g~-i = g l l  = - 

f O  - -  ( D  O X 

so that 

Then too 

(171 10) : - e i~,d. 

Z +  ( h  = # 2 1  g11(~-) . 

Now applying our new key relation for the g(t-)'s 

g0g l  l(t" ) : - -  1 q- ( .00gl  1 (t-) -b e ixi 

we obtain 
- -  1 q- e ix~ 

g l l  - -  
X 

Thus the shape of the absorption curve is the non-Lorentzian one 

sinxt- 
img**(T)- - -  

x 

as would be anticipated for a step function interaction. When t-~ oo the function 
goes over into ~r6(x) (no final finite natural line width). 

The Spectrum for Short Times 

Now we use the key relation for the new g's to work out the absorption 
spectrum for the model with vibrations. As before 

and then 

( D g l l ( ~  = - -  1 ~- iO( t )O(- ' [ - -  0 ( l t l H ( 0 )  1o>1,o 

+ (1}-[ 10}e i~ . 

Carrying out the operation with H(0), and bringing m the result for ( l t ]  10} 
obtained above, we find 

q- e -  i ~ 1 7 6  7"{e i~ 

= - 1 + COog 11(7) + 7gl2(t-) 

q- COS 7 r e  ix? . 
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Similarly 

cogl 2(t-) = co0 gi2(t') + 7gi 1 (t') -- i s inyFe  ix~ " 

The solution for g~ 1([) now with the transient phenomena included is 

gll(F) = x ( -  1 + cosTFe ixr) - iTsinTTd x7 

(x + ~) (x - 7) 
so that 

img11(~- ) = x c o s T [ s i n x { - -  7 s i n T [ c o s x - {  

(x + v) (x  - ~) 

With a trigonometric identity this expression simplifies to 

1 sin(x+y)t-  + 1 s i n ( x - y ) ?  
img11(F) = 2 x + y  2 x - 7  

an expression reminiscent of the one for the old g l ,  as spectrally resolved, only 
now with components which have line shapes appropriate for a step-function 
interaction. This last way of expressing ilngl,(T) lends itself nicely to the con- 
struction of a composite absorption curve. The components scale in a simple 
way: thus when t" is doubled we have component curves which have half the 
width and twice the height, and so on. 

As an aid in plotting our results we may put ?=  1 at the start. Then an inter- 
esting case results when 7 = ~/2. In this case the components have their first nodes 
one at the pole position of the other (see (I) in Fig. 1). This case corresponds 
to ?=(7r/4)(2/7); that is, t-in the neighborhood of 2/7 but less than 2/7. The 
composite absorption (solid line) has a single peak at x = 0 (co = COo) as expected 
for short time intervals for the interaction. 

The composite curve II in the figure was obtained by adjusting the components 
to correspond to ?-= 2, still, of course, with 7 = n/2. It corresponds to ?-= (re/2) (2/7); 
that is, Fin the neighborhood of 2/7 but greater than 2/7. The curve already shows 
a separation into two bands, one at each pole; and as )-is further increased the 
line structure quickly sharpens. 

It should be appreciated that the component curves are not unique, only the 
composite ones. The frequency behavior of the absorptive part of the dipole 
response as given by the composite curve I in Fig. 1 ought to be taken at face 
value as a simple distribution, peaking at coo. (Though with a width which 
necessarily embraces the range + 7) so that the principal harmonic component in 
the function being analyzed is coo = ( l lH[15 .  Also worth noting is the abruptness 
of the change-over from type I to type II, in view of which one would not be 
very much in error to take the point of balance as ?-= 2/7. 

For  the many-level case one could think of blurring out the absorption 
spectrum either by using t < 4A,  t ~ 4/A,  where A is a representative prominent 
vibrational spacing, or by using t < F, t ~ F, where F is an appropriate measure 
of the width of the entire electronic band. Experimentation with components shows 
that the latter alternative will give a smooth envelope with overall shape governed 
by the magnitudes of the various Franck-Condon integrals (vertical excitation); 
whereas the former gives a distorted band having an imperfectly disguised 
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1 
imgll (}'] 

co O- y w 0 OaO+ y 

W ~  

Fig. 1. Predicted absorptions for short times of interaction between light and molecule. Curve I 
shows spectrum for }< 2/7(t-= (~/4) (2/7)) whereas curve II shows spectrum for t >  2/7(}= (~/2) (2/j). 

Curves with light lines are pole components 

vibrational structure. Thus ? in this note should be thought of as like F, in spite 
of the fact that literally for the two-level model it gives a vibrational interval 
A = 2  7. 

Generalization 

If in the foregoing we had used as basis functions (see Fig. 2) 

la> =~PN , Ib>=~PVll/[/2], Ic>=WVl_l/]//2] 

we should have found (7 < 0) 

H = (COo + 7)Ib> <hi + (COo - 7)Ic> <cl 
and 

I~op = (/~Nv/I/2) (la> <bl + Ib> <al + la> <cl + Ic> <al). 

Then we would have had to use an expression for the susceptibility with two terms 

z+ = ( Nv/K2) 2 (g b + got). 

The component curves in Fig. 1 would have arisen not as the result of the applica- 
tion of a trigonometric identity to the original function obtained for imgla but 
instead "naturally" as related to the description in terms of stationary states. The 
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IC~ --. 

\ 
Ib>. 

NV 

I0>, Io > 

/? T 
\ I / / 

Y II >,12> 

iI / 

Fig. 2. Potential energy curves associated with N V and lower transition. Vertical excitation shown 
by heavy lines. Transition with no intensity shown by dashed line. Dissipative process (continuum 

of levels not depicted) by wavy line 

composite curves would of course have been the same. With the basis functions 
10), I1>, 12> the characteristic constant 7, appears as an off-diagonal term in H. 
This corresponds manifestly to the idea of a 7 process which converts I1) into ]2> 
and which arises in an intuitively agreeable manner  as we set up the equation 
for 91 ~ namely 

( D g 1 1  = - -  1 + 0 0 0 1 1  + 7 9 1 2 "  

We have just seen that this process does not have to show up explicitly. Yet the 
correlation function will in any case turn out to be e-i~~ ", so that if 7 < o0 
the frequency Oo will be the dominant  one in the absorption spectrum for short 
times and we can say that the state ]1) (<10] HI10> = ~Oo) occurs first; moreover 
these facts are independent of the basis. 

Now we make the conjecture that  in general if we can choose our basis set 
so that it contains the true ground state function, and so that X+ consists of one 
term only, call it #21gal , then the relevant excited state basis function 11) will 
refer to the state which occurs first after the light is turned on. We have to include 
the proviso that the diagonal matrix element <10]H]10),  like ~o o above, is 
considerably greater than the off-diagonal ones < j01Hi l0 ) , j  # 1, like 7 above. 

The reasoning back of this conjecture is that when we set up the expression 
for g l l  (no need to consider gll(7)), we have to compute the Hamil tonian part  

iO<llHilO)lo,=g11(,lOIHIlO)+ ~ g/l(,j01H110) 
j4-1 

and, roughly speaking, for short times we may ignore the terms j #  1: which 
would give 

Ogli = - -  I +00911 

g 11 = 1/o -- a~ o 
and 

<1110 ~ = e-i~o ~. 
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The Hamil tonian part  of the expression for g l l  arose because of the need to 
obtain 

d 
dt <11 = - i ( l l H  

under the Fourier transform. The boundary conditions are such that if we write 

<ll = q(t)<10[ + c2(t)<201 + --- 

then ca (1)= 1, c2(0)= 0 . . . . .  Now taking 

H = (10l H I10)110> <10[ + (201H I10> 120> <10l 

+ (10IHI20> I10> <201 + ... 

we find, as t--, 0, 

< I IH  = <10IH[10> <101-4- <10[H 120> <201 +- - -  

and writing the differential equation as a difference equation (t = t '~0)  

< l t - I  - ( 1 0 1  = - i [<10IHI10)  (101 + <101H ]20) <201 + . . . ] 7  

<lt-I = [1 - i(101H I10)T] (101 + const (201 t-+ ... 

so that the correlation function 

<17-110> = 1 - i ( 1 0 l  HI10>t-. 

That is, for short times, it indeed starts out the same way as e -i<l~176 
What  governs the time evolution of the state reached first after the light is 

turned on remains to be considered. Going to a more abstract statement of the 
problem let us start with a set of energy eigenfunctions representing a system 
with no permanent  dipole moment,  and let us treat just one vector component. 
Then we should have a certain electric moment  matrix, call it ~, with zeroes on 
the diagonal. We should like to transform a finite part  of this matrix so that it 
has a different form, with only one non-vanishing element in the the first row 
(and column) 

i #01 0 0 0 
# =  lo 0 #1z #13 #14 

/'/21 0 #23 ]'/24 ... 

We call the new part  #. The basis function for #oo is to remain the same as for 
fioo (ground state). With the transformed matrix we should have, in the frequency 
range of interest 

Z+ = 2 #Ojgjk#ko = #21gll 
jk 

thus to satisfy our requirement that Z+ consist of one term only. We now ask 
whether the transformation is possible. 

Let us assume that the region of interest is spanned by the stationary states 1 
to 3. Then the top row of g may be taken as 

0 ~1 ~2 ~3" 
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Now combine the first (not the zeroth) and second energy eigenfunctions so as 
to give two new orthonormal  functions and in such a way that the first row of a 
new matrix based on the combined functions has a zero in the place labelled 
with 2 

0 go1 0 goa- 

Now repeat with the new first function and the third. The result will be denoted 

0 ]/01 0 O. 

The transformation is possible, and proceeding inductively one sees that as far 
as the introduction of zeroes is concerned there is no limit to the number of 
states which can be included. 

Although it is believed that the function IlO) is thus uniquely determined, 
the transformation is by no means unique, because if for i,j > 1 

then also 

(O[] /op[ i )  = # o i  = O, ] /oj  = 0 

(0l]/opll-cili) + cj~)]  = 0 .  

The first state reached after the light is turned on would be the state I1) with 
#ol r 0. Putting aside complications from having to consider statistical weights 
one could say that the next state reached would be that linear combination I k) 
of the new basis functions 12), 13) . . . .  such that the relative degeneracy 

K IOIHlkO)I2/( IO]HIIO) - (kO[HlkO) 

is a maximum (like ~ above which, for simplicity, was taken as connecting two 
perfectly degenerate states). 

The relative degeneracy parameter would have to correspond to an interaction 
constant which is less than the main frequency, ( 1 0 l H l k 0 ) ~  (10IHI10),  like 
7~COo, but one readily sees that this condition is automatically achieved in 
practical cases. Thus for an isolated electronic transition described according to 
the Born-Oppenheimer approximation, the basis functions would be the set 
generated by multiplying the excited electronic function by ground state vibrational 
functions. The off-diagonal terms in the Hamiltonian needed to reconstruct the 
stationary state functions would be no bigger than the overall width F, and in 
most, though not all cases, this would be less than the vertical excitation frequency. 
Indeed if F were comparable with the main electronic excitation frequency one 
would not except the Born-Oppenheimer approximation to be valid. 

P o s t s c r i p t  o n  I n t e r n a l  C o n v e r s i o n  

For  the calculation of transition probabilities the traditional procedure is to 
connect eigenstates of an unperturbed Hamiltonian by means of the perturbing 
term. Sometimes it is not so obvious how to divide the full Hamiltonian into 
perturbed and unperturbed parts - that is, how to describe the states: initial and 
final, and correspondingly, how to see what causes the transition. A case in point 
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is the radiationless transition from the ground vibrational level of, say, the second 
excited singlet to an accidentally degenerate vibronic state belonging to the first 
excited singlet (see Fig. 2). It is perhaps natural to have misgivings about this or 
that explanation of such processes along the following lines: if the pertinent 
states in the region of the degeneracy are eigenstates of the full molecular 
Hamiltonian, stationary states, then there should be no mixing, and no opportunity 
to describe radiationless transitions. 

The foregoing treatment of vertical excitation gives us a clue as to how to 
proceed, because there we started with what can be regarded as a full Hamiltonian 
without the conventional division into unperturbed and perturbed parts, and yet 
we found a time dependent process, the nuclear reorganization, with characteristic 
constant ~7.  What made this possible was that the prepared state, the one 
formed first after the light was turned on, was not a stationary state. To understand 
internal conversion we may in effect follow the evolution of such a prepared state 
yet a step further [61. Typically (for simple molecules) we encounter a new state, 
call it 13>, which is accidentally degenerate with and interacts with one of the 
vibronic states say the one (1/]/~) [11) + 12>1 or Ib), with energy coo + 7. Then we 
should have as the Hamiltonian 

H = COo [11) <11 + 12) <2[] + (coo + 7)13) <31 

+ 7111) <21 + 12) <ill 

+/~{(1/1/2) [ll> + 12>1 <31 + 13> (l/l/2) [<ll + <21]}. 

Whereas the reorganization constant 7 ~  1014,/?, the constant for internal 
conversion is usually estimated to be somewhere in the neighborhood of 10 9 . 

The two processes are well separated. It is not unrealistic here to take the electric 
moment operator still as 

~op = ~Nvl-10> <11 + I1> <01l 

neither with terms involving 12> nor with terms involving 13>, the new level. This 
corresponds to the situation which we describe intuitively as no overlap of 
intensity between the two electronic absorption bands, and would allow us to 
go ahead using just #11, as before, for the susceptibility function. The state reached 
first is therefore l1 >. The unfolding of this state goes initially according to the 7 
process, because (referring to the previous section) 12> is the only state degenerate 
with l1 >. The further unfolding can be followed. If we are interested in the frequency 
region around co+ = coo + 7 (and considering that 7 >>/?) we may proceed more 
directly by introducing a change in notation. We take (110> ~ la0>) 

#op = (/~Nv/l/~) (la> <bl + Ib> <al) 

that is, without any contribution from 13> just as the original #op had no contribu- 
tion from 12>, and 

H = (coo + ~') (Ib> <bl + 13> <3[) 

+/~(Ib> <31 + ]3> <bl). 

The "first" state reached is Ib> and the develpment of Ib> is governed by/3. That 
13> can be identified with a vibronic level belonging to a distinct potential energy 
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surface is perhaps not  always the case. If it should prove to be the case then we 
see that/3 is a matrix element over the terms needed to round  out  the Hamil tonian  
of  the Born-Oppenhe imer  approximat ion.  

The susceptibility this time is Z+ =(#~V/2)gbb �9 The Green's  function, as 
spectrally resolved, is 

1 1 1 1 
9bb-- 2 CO--(CO++/~) 2 CO--(CO+--fl) 

SO that  the absorp t ion  spect rum in the region of co+, in perfect analogy with the 
work  on vertical excitation, is governed by the Four ier  t ransform of the correlat ion 
function, namely  

e-iO~+?cosflT. 

When  t<2/t~ (but t->~2/V) we have simply a b road  absorpt ion at co+. When  
?> 2/fl the splitting materializes. The first zero of the correlat ion function as 
modula ted  by cosflt- corresponds  to the first passage of the excitation over into 
13). Thus we can use/~ as a characterist ic constant.  Wha t  is more, if for some 
reason when the excitation passes over to 13) it cannot  get back (the ~ process 
in Fig. 2) then 1/J~ will serve to determine the lifetime of the state at co + [73 ; also 
the width, which would encompass  the region co+ + f l  much  in the same way 
that  curve I in Fig. 1 covers the region coo --- V. 
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